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An adaptive implicit–explicit scheme for Direct Numerical Simulation (DNS) and Large-
Eddy Simulation (LES) of compressible turbulent flows on unstructured grids is developed.
The method uses a node-based finite-volume discretization with Summation-by-Parts
(SBP) property, which, in conjunction with Simultaneous Approximation Terms (SAT) for
imposing boundary conditions, leads to a linearly stable semi-discrete scheme. The solu-
tion is marched in time using an Implicit–Explicit Runge–Kutta (IMEX-RK) time-advance-
ment scheme. A novel adaptive algorithm for splitting the system into implicit and explicit
sets is developed. The method is validated using several canonical laminar and turbulent
flows. Load balance for the new scheme is achieved by a dual-constraint, domain decom-
position algorithm. The scalability and computational efficiency of the method is investi-
gated, and memory savings compared with a fully implicit method is demonstrated. A
notable reduction of computational costs compared to both fully implicit and fully explicit
schemes is observed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) are widely used to simulate compressible turbulent
flows. DNS simulates all the flow scales, whereas in LES, the equations are low-pass filtered, and the small-scale turbulent
eddies are modeled. Recently, there has been a growing interest in applying DNS and especially LES to practical engineering
applications that typically involve high Reynolds number flows and complex geometries. An unstructured spatial discretiza-
tion scheme is the preferred choice to resolve complex geometries. Both the computational grid and the flow may induce
stiffness in the equations restricting the time-step size of an explicit time integrator. Typical examples include resolved
boundary layers for which both the viscous and inviscid terms may be stiff. The former is due to the small grid size and
the latter is due to the acoustic Courant–Friedrichs–Lewy (CFL) condition.

Several approaches have addressed stiff equations. A fully implicit approach treats every term throughout the entire com-
putational domain implicitly. However, it requires the solution of a large non-linear system of equations. For realistic appli-
cations, the cost of solving the non-linear system may be more than marching the scheme explicitly in time. Some methods,
such as relaxation-based schemes and multi-grid reduce the cost of a fully implicit approach (see [1], and for unstructured
methods [2] and references therein). Furthermore, the memory required to store the Jacobian matrix and preconditioners is
considerable and may prevent computations of realistic applications. The memory requirement for the Jacobian matrix can
be reduced by means of a pressure-correction method [3,4] or eliminated by using a Jacobian-free Krylov subspace linear
. All rights reserved.
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solver [5]. For the latter method, the sparse matrix–vector multiplication is replaced by a flux calculation, which increases
the computational cost. Hence, there is considerable room for designing effective numerical schemes by avoiding fully im-
plicit time-integration schemes.

One approach to reduce both memory and computational cost is to identify stiff parts of the Ordinary Differential Equa-
tion (ODE) system obtained from spatial discretization of the governing PDE and employ an implicit–explicit (IMEX) time-
integration scheme. An IMEX scheme integrates stiff parts implicitly and the non-stiff parts explicitly in time. Such a time-
advancement scheme can be constructed using linear multi-step methods [6]. Alternatively, one may use Runge–Kutta based
IMEX schemes [7,8] that have better stability properties than linear multi-step methods. In any case, an IMEX method re-
quires partitioning of the ODE system into stiff and non-stiff parts. The stiffness may originate from specific terms in the
governing equations (see for instance, [9–11]) and/or from specific directions/regions in the flow (for example, the wall-nor-
mal diffusion in a boundary-layer simulation [12]). However, for the unstructured grids it is difficult to identify a stiff direc-
tion. For specially designed unstructured grids, Nompelis et al. [13] proposed a method with an implicit treatment of the
wall-normal direction. Nevertheless, in many cases, the stiffness is confined to certain regions in the computational domain.
A possible approach for such problems is to use a variable hybrid method that blends explicit and implicit schemes using a
continuous parameter controlling the fraction of each problem [14]. Alternatively, one can decompose the computational
domain into implicit and explicit regions using a measure for geometrically induced stiffness (see Kanevsky et al. [15]).

Therefore, there is potential for saving computational cost by designing an efficient algorithm that treats implicitly only
those regions and/or phenomena that require it. In this paper, we propose a novel splitting algorithm that measures the stiff-
ness and devise implicit and explicit parts, with respect to both the computational domain and the spatial directions. The
splitting algorithm will be referred to as Row-Splitted IMEX (RS-IMEX) scheme. The RS-IMEX scheme operates in time allow-
ing the decomposition to adapt at every time step. Moreover, the scheme is well-suited for large-scale computations re-
quired for the DNS/LES, as it is designed to be highly parallelizable and scalable.

In this study, we use a node-based finite-volume scheme to discretize the spatial derivatives. In [16–18], the SBP and SAT
techniques for imposing boundary conditions were used to prove stability for high-order finite difference approximations of
the Navier–Stokes equations. Furthermore, the SBP property was proved for node-based unstructured finite-volume schemes
in [19–21]. In Section 2, we utilize these results to obtain a stable finite-volume discretization. In Section 3, we develop the
RS-IMEX scheme for the advection–diffusion equation and generalize it to the Navier–Stokes equations on unstructured
grids. Finally, we validate the proposed scheme and demonstrate its performance using several test cases in Section 4.

2. Governing equations and spatial discretization

The governing equations are the compressible Navier–Stokes, energy and continuity equations. Let X and @X be the com-
putational domain and its boundary. By using Lr, qr, ur, Tr, and lr as reference length, density, velocity, temperature, and
molecular viscosity, the equations can be stated as
@
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where l = Tn, n = constant, dij is the Kronecker’s delta, Mr ¼ ur
cr

, cr is the reference sound speed, and Pr is the Prandtl number.
The equations are supplemented with the state equation for an ideal gas, p ¼ qT

cM2
r
, and a suitable boundary operator,

L@X ¼ gð~x; tÞ on @X.
The domain X is discretized by an unstructured grid with M grid cells Xc such that X ¼

SM
c¼1Xc . Eq. (1) is approximated by

a finite-volume method on the dual volumes, Xk. In 2D, the dual volumes Xk are constructed by connecting the edge centers
(ec), to the cell centers (cc), as depicted in Fig. 1. In 3D, the dual volumes are formed by the union of several triangular faces.
Each face is constructed by connecting the edge center, the cell center, and the face center of the grid cells.

A finite-volume method defined by the dual volumes is usually referred to as a node-based scheme or a cell-vertex
scheme. On a fixed dual volume Xk with fixed boundaries @Xk and outward-facing normal ~n, the integral form of (1) is
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Fig. 1. Schematic of an unstructured grid with the dual volumes Xk.
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where nj is the jth component of the surface normal~n multiplied by the surface area. As seen in Fig. 1, @Xk consists of a num-
ber of sub-boundary faces, @Xf

k, that satisfy @Xk ¼
S

f@X
f
k. We denote the components of the face normals by nf

j . A node-based
discretization of (2) can be written as
@~Uk
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where VXk
is the volume measure of Xk, and ~Uk are the unknown state variables at grid point k.~Ff and ~Gf are approximations

of the fluxes at the sub-boundary faces @Xf
k, yet to be defined.

Let the superscript a represent the averaging between the node k and its neighbor nbr, e.g. qa ¼ qkþqnbr

2 . We use a skew-
symmetric form (see [22–25]) and define
~Ff
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j Þ
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(
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We also note that the difference between the central scheme obtained from simple averaging [19] and the skew-symmetric
is a small built-in diffusion term (see [26]). Hence, the stability of the skew-symmetric scheme follows from the SBP–SAT
properties.

Next, we define the viscous fluxes ~Gf on the subfaces @Xf
k. We follow the same approximation used in Ham et al. [27]. For

any function /, the derivatives in 2D along the two independent directions x01 and x02 (see Fig. 1) are approximated as
~r/jf ¼ /nbr � /k

lk;nbr
ê01 þ

/cc � /ec

lcc;ec ê02; ð5Þ
where ~r/jf is the gradient approximation along the subface @Xf
k. ê01 and ê02 are the unit vectors in x01 and x02 directions. lk,nbr is

the distance between the nodes k and its neighbor nbr, and lcc,ce the distance between the cell center cc and edge center ec in
the prime grid. Using this approximation for gradients on each subface, viscous fluxes ~Gf can be calculated.

Remark. On structured grids, this method of calculating viscous fluxes will reduce to the same discretization used in [28],
which was shown to be an SBP operator. Ham et al. [27] studied this method for the Laplacian operator and showed that for
simplex elements, the operator has the SBP property. They also demonstrated its stability for general polyhedral grid by
performing numerical examples. To the best of the authors’ knowledge, there is no stability proof for general unstructured
grids, but the numerical examples, as well as the analysis of the resulting matrices, show that in absence of extreme element
deformations, they are negative semi-definite and, therefore, stable.

We also use the far-field boundary conditions for SBP–SAT schemes proposed by Svärd et al. [18]. The far-field conditions
specify data for a sum of the in-going characteristics and the viscous fluxes. Furthermore, we use the no-slip wall boundary
conditions in Svärd and Nordström [17]. The far-field and wall boundary conditions lead to linear stability for SBP–SAT dis-
cretizations of the full Navier–Stokes equations.
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In conclusion, the finite-volume scheme can be proven to be linearly stable for the Navier–Stokes equations on structured
grids and for the Euler equations on unstructured grids. Furthermore, numerical studies indicate that this holds for the Na-
vier–Stokes equations on unstructured meshes as well.

3. Time integration and splitting algorithm

The semi-discrete finite-volume scheme described above leads to a large system of ODEs. To discretize this system in
time, we use the IMEX Runge–Kutta (IMEX-RK) time integrator of Le and Moin [10]. For a general ODE system
~/t ¼ f ð~/; tÞ, with f = f e + f i denoting a formal splitting into an explicit and implicit part, the three-step time-advancement
scheme can be written as
Table 1
Coeffici

k

1

2

3

~/k �~/k�1

Dt
¼ ckf eð~/k�1Þ þ fkf eð~/k�2Þ þ akf ið~/k�1Þ þ bkf ið~/kÞ; ð6Þ
where k = 1, 2, 3 denotes the substep number. (k � 2 is ignored for k = 1.) ~/0 and ~/3 are the solution vectors at time steps n
and n + 1, and Dt is the time-step size. The coefficients ck, fk, ak, and bk are given in Table 1.

Stability analysis of IMEX-RK schemes has been carried out for the scalar case, /t = (ki + ke)/. For a general system of
equations, e.g. ~/t ¼ K~/, stability would follow from the scalar results if the system matrix is diagonalizable and spectrally
decomposed into explicit and implicit parts, i.e., K = SKS�1 = S(Ke + Ki)S�1 = SKe S�1 + SKiS�1 = Ke + Ki, where K, Ke, and Ki

are diagonal matrices, S is a matrix whose columns are eigenvectors of K, and Ke and Ki are the explicit and implicit parts,
respectively. However, this requires knowledge of the eigenvectors and eigenvalues, which are not known (or computation-
ally too expensive to obtain) in the general case. Below, we propose an algorithm that splits the problem into explicit and
implicit parts by ensuring that the spectral radius of the explicit matrix does not violate the CFL condition. In this matter, our
analysis is similar to previous work for time advancement of advection–diffusion equations, in which the diffusion terms are
advanced implicitly in time while the convection terms are marched in time using an explicit time integrator [29]. We
acknowledge the fact that this is not a rigorous stability proof because the resulting explicit and implicit parts are not nec-
essarily diagonalizable and more importantly they are not necessarily simultaneously diagonalizable. Proving stability for an
IMEX-RK scheme when applied to a general system of equations is tremendously difficult and to the best of the authors’
knowledge, there is no such a proof. However, previous studies (e.g. see [10,11,15]) as well as the current one show that
the eigenvalues estimation works well in practice.

3.1. The splitting algorithm

We introduce the splitting algorithm using the linear variable coefficient advection–diffusion equation:
@/
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with periodic boundary conditions and b(x) P 0. A discretization {xj} of the x-axis and Dþj ¼ xjþ1 � xj;D
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and the second derivatives as
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Let ~/ ¼ ð/1; . . . ;/NÞ
T and introduce the diagonal matrix P with positive components Pii = Di. Then the scheme can be written

as
~/t ¼ K~/ ¼ P�1M~/: ð10Þ
This scheme is energy-stable [19,20], implying that M + MT is negative semi-definite and k~/kP ¼ ~/T P~/ is bounded by the ini-
tial data.
ents of the RK time-advancement scheme of Le and Moin [10].
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Before defining the splitting algorithm, we show that for the system ~/t ¼ K~/ ¼ P�1M~/, the eigenvalues of the discretiza-
tion matrix K have non-positive real parts. Because we are considering energy-stable schemes and M + MT is negative semi-
definite, we have ð~/T P~/Þt ¼ ~/TðM þMTÞ~/ 6 0 for any solution vector ~/ . By assuming that K has an eigenvalue k+ such that
Real (k+) > 0 and has a corresponding eigenvector ~vþ, then ~vþt ¼ kþ~vþ and ð~vþ;T P~vþÞt ¼ kþ~vþ;T P~vþ > 0, which contradicts the
energy stability. Hence, the eigenvalues of K do not have positive real parts.

The objective is to split the system of ODEs (10) into K = Ke + Ki, such that Ke has a small spectral radius. Then Ki is the
remaining stiff part with a potentially large spectral radius. Because eigenvalue computation is extremely costly for large
systems, we propose to base our splitting algorithm on the Gerschgorin theorem. Based on this theorem, all the eigenvalues
of the N � N matrix K = [kij] are located in the union of discs Wi (in the complex plane C), i.e., k 2 [N

i¼1Wi, where k is any eigen-
value of the matrix K;Wi ¼ fz 2 C : jz� kiij 6 RiðKÞg, and RiðKÞ ¼

PN
j¼1;j–ijkijj. The schematic of the discs Wi and the corre-

sponding radii RiðKÞ are shown in Fig. 2.
We define a set of radii RiðKÞ ¼ jkiij þRiðKÞ and the Gerschgorin radius RG(K) = maxiRi(K). It should be noted that RG(K)

dominates the spectral radius of matrix K (denoted by RS(K)), i.e., RG(K) > RS(K). In other words, the disc {z 2 C:jzj 6 RG(K)}
will include all the eigenvalues of matrix K. If Ki = 0, the IMEX-RK scheme (6) would be a purely explicit scheme and admit
a maximal spectral radius Re. In that case, by choosing Dt such that RG(K) < Re/Dt, we obtain a stable discretization (see [30])
as is demonstrated in Fig. 2. Based on this observation, for any given Dt, we propose the Row-Splitting algorithm by estimat-
ing the eigenvalues of K as

for i = 1, N
calculate Ri(K)
if (Ri P Re/Dt) then

move the entire row i of K to Ki

else
move the entire row i of K to Ke

end for

which will guarantee that RG(Ke) < Re/Dt. The algorithm can be written in matrix form as
Fig. 2.
semi-ci
time in
Ke ¼ EK and Ki ¼ ðI � EÞK;

where E is an N � N diagonal matrix with
Eii ¼
1 Ri < Re=Dt ðrow i is treated explicitlyÞ;
0 Ri P Re=Dt ðrow i is treated implicitlyÞ:

�
ð11Þ
It is also possible to prove that the real parts of the eigenvalues of both Ki and Ke are non-positive. Because both Ki and Ke are
defined similarly, it suffices to study Ke. Define Me = PKe and note that Me = EM because P commutes with E. Consider a non-
zero eigenvalue ke and a corresponding eigenvector v of the matrix Me. By definition E is a projection, i.e., E2 = E. Hence,
keEv = EMev = E2Mv = EMv = Mev = kev and Ev = v. Moreover,
vHkev ¼ vHMev ¼ vHEMv ¼ vHEMEv; ð12Þ

and
ðke þ �keÞvHv ¼ ðEvÞHðM þMTÞEv 6 0: ð13Þ
Schematic of the Gerschgorin’s theorem, eigenvalue approximation, and RK stability diagram. The stability diagram (----) is scaled by 1/Dt. The blue
rcle with radius Re/Dt is the largest semi-circle with center at the origin of the complex plane which is circumscribed by the stability region of the RK
tegrator. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Because v is an eigenvector with l2-norm 1, non-positiveness of the real part of ke follows from negative semi-definiteness of
M + MT.

In conclusion, for a given Dt, the aforementioned splitting algorithm will guarantee that all the eigenvalues of the matrix
Ke lie inside the semi-disk {z 2 C:jzj 6 Re/Dt& Re (z) 6 0} depicted in cyan in Fig. 2.
3.1.1. Numerical example
To test the algorithm, we use the advection–diffusion Eq. (7) and we set a = 1 and vary b to control the dissipation. First,

we consider the following three cases:

(a) b = 3.6 � 10�5,
(b) b = 1.7 � 10�3,
(c) b = 3.6 � 10�3.

For a small b (Case a), the real parts of the eigenvalues of the matrix K are small. Maximum value of the real parts of the
eigenvalues of the Case b is of the same order as the maximum value of their imaginary parts, whereas for Case c, maximum
real parts is an order of magnitude larger than the maximum imaginary parts (see Fig. 3).
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Fig. 3. Eigenvalue distribution of the advection–diffusion equation using a hyperbolic tangent grid stretching. Top-left: Case a; top-right: Case b; bottom-
left: Case c; and bottom-right: implicit–explicit grid points distribution for Case a. 55% of the nodes are advanced implicitly. For the top figures and the
bottom-left, �: eigenvalues of the original system, : eigenvalues of the explicit fluxes, and : eigenvalues of the implicit fluxes.
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For all the three cases Re is set to
ffiffiffi
3
p

(see [10]) and Dt = 6.2 � 10�2. A total of 64 grid points are used to discretize the do-
main [�1,1]. The stretching parameter is based on a hyperbolic tangent function to cluster points at the boundaries. The ratio
of the largest grid spacing to the smallest one is set to 13.3. Eigenvalues of both the original and split system are computed and
shown in Fig. 3 (note that the scales of the axes are different). The eigenvalues of the explicit matrix are clustered near the
origin, whereas the implicit matrix has eigenvalues with large magnitudes (of the same order as the original system).

To study the effect of irregular grids, we recompute Case b. To this end, we consider an extreme case for which a random
grid with a ratio of the maximum to minimum grid spacing of 20 is used. The eigenvalue distribution of both the original and
the split systems is shown in Fig. 4. Again, the method is capable of clustering the eigenvalues of the explicit matrix near the
origin, which indicates that the algorithm is working. Note that in all the cases, the eigenvalues are non-positive as proved
earlier in this section.

Lastly, to study the effect of diffusion (numerical/physical) on the stability of the RS-IMEX method, we consider a margin-
ally stable case. Here, we use a uniform grid with 64 grid points and we set b = 0. For this problem, the discretization (8) does
not contain any numerical diffusion and thus, all the eigenvalues of the discretized system are imaginary. If the proposed time
splitting scheme is applied to this problem, depending on the time-step size all the grid points will be either explicit or im-
plicit. However, we can artificially assign the implicit/explicit attribution and test the method with a manufactured implicit–
explicit splitting. For this purpose, the time step size is set to Dt = 3.12 � 10�2 and implicit time advancement is applied to
one-third of the grid points. Fig. 5 illustrates the implicit grid points distribution and the eigenvalues of the original and
the split system. One can see that the eigenvalues of both explicit and implicit matrices have zero real parts. Furthermore,
the field is initialized with a sine profile /(t = 0) = sin(�px). The equations are advanced in time up to final time t = 100.
The exact solution is computed as /exact = sin(�p(x � t)). Moreover, we compute the solution at t = 100 with a significantly
small time-step size Dt = 3.12 � 10�4 and we denote it by ~/. Fig. 5 shows the two errors / � /exact and /� ~/ at t = 100 (50
flow throughout the domain). Note that /—~/ is dominated by the time discretization errors. A slight non-smoothness in this
error is due to the mixed implicit–explicit time-advancement method, however, it is of O(Dt2). The results show that the solu-
tion stays bounded for a long integration time and, therefore, the method is stable in absence of any physical and grid-induced
numerical diffusion (note that numerical diffusion caused by the time-advancement scheme is still present).

3.2. Implicit–explicit splitting for the Navier–Stokes equations

Consider the approximation (3) of the Navier–Stokes equations, compactly written as
Fig. 4.
Right: g
@~U
@t
¼ ~Hð~UÞ; ð14Þ
where ~U ¼ ð~UT
1; . . . ; ~UT

NÞ
T is the solution vector and N the number of grid points. Similarly, the right-hand side

~H ¼ ð~HT
1; . . . ; ~HT

NÞ
T is the approximate gradient of the flux vector
~Hk ¼ �
1

VXk

X
f

X3

j¼1

~Ff
j �

1
Re
~Gf

j

� �
~nf

j : ð15Þ
As before, we introduce ~H ¼ ~He þ ~Hi. The stiffness is estimated from the eigenvalues of the flux Jacobian matrix. The Jacobian
matrix J consists of 5 � 5 blocks J ij such that
−7 −6 −5 −4 −3 −2 −1 0
−4

−3

−2

−1

0

1

2

3

4

−1 −0.5 0 0.5 1

0

1

Advection–diffusion equation with a random grid. Left: eigenvalues of both original and split system. Symbols denote the same quantities as in Fig. 3.
rid, 57% of the nodes are implicit.
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J ¼ @
~H

@~U
¼ ½J ij�; J ij ¼ @

~Hi

@ ~Uj

; i ¼ 1; . . . ;N; j ¼ 1; . . . ;N: ð16Þ
We find that the final matrix J is sparse because most J ij are 0.
We generalize the splitting algorithm proposed in Section 3.1 to the Navier–Stokes equations by applying the proposed

splitting method to the Jacobian matrix J. However, we simplify the algorithm and do not consider every row in the matrix
individually. Instead, we move the entire flux ~Hi, corresponding to the grid point i, to either the explicit ð~HeÞ or the implicit
ð~HiÞ part. Note that the flux ~Hi corresponds to the five rows 5i � 4,. . .,5i in the Jacobian matrix J (these five rows are called
block row i). To this end the block radii are calculated as
bRiðJÞ ¼ max
l2f1;...;5g

XN

j¼1

X5

m¼1

jJ ij
lmj

( )
i ¼ 1; . . . ;N; ð17Þ
where J ij
lm denotes the components of J ij. For a given Dt, we propose the following splitting algorithm:

for all grid points i from 1 to N

calculate the block radius bRi

if ðbRi P Re=DtÞ then

move the flux ~Hi to implicit portion ~Hi

else

move the flux ~Hi to explicit portion ~He

end for

that ensures that the Jacobian matrix of ~He has a spectral radius smaller than Re/Dt. In matrix form, the algorithm reduces to
~He ¼ ðE� I5Þ~H where E is an N � N diagonal matrix defined in (11) and I5 is the 5 � 5 identity matrix. Finally, using the pro-
posed algorithm, the semi-discrete equations are split into
@~U
@t
¼ ~Heð~UÞ þ ~Hið~UÞ ð18Þ
and are advanced using the RK time integrator in (6).

3.3. Practical considerations

LES and DNS of flows of practical interest involve millions of grid points requiring efficient parallel algorithms. In this sec-
tion, we briefly discuss the key elements in the application of the method to large-scale computations.

3.3.1. Further element reduction from implicit fluxes
Thus far we have treated an entire block row i in the Jacobian matrix, which corresponds to the flux~Hi, as either explicit or im-

plicit. We call any grid point j a neighbor to i ifJ ij – 0. In its present form, the proposed algorithm does not take directional stiffness
(such as wall-normal derivatives in a boundary layer) into account because the implicit/explicit attributions are associated with
the fluxes and the contributions from all neighbors of a grid point are treated in the same way (either implicit or explicit).

Hence, to refine the algorithm we remove terms from implicit fluxes that contribute negligibly to the stiffness. We
define
eRij ¼ eRðJ ijÞ ¼ max
l2f1;...;5g

X5

m¼1

jJ ij
lmj

( )
; ð19Þ
which represents the stiffness contribution to grid point i from grid point j. To reduce the number of elements in the implicit
part, we modify the algorithm as:

for all grid points i from 1 to N

calculate the block radius bRi

if ðbRi P Re=DtÞ then
for all grid points j that are neighbors of i

if ðeRij > Re=ðvDtÞÞ, then
move the flux term associated with
grid point j to the implicit portion

end if
end for

else

move the flux ~Hi to explicit portion ~He

end for
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where v is a grid type- (e.g. hexahedral or tetrahedral) dependent parameter. Another approach would be to choose the p
smallest eRij’s such that

P
p
eRij 6 Re. However, this requires more work and more communication between the processors than

does our approach with v. For a hexahedral grid, a suitable value is v = 27 (the number of neighbors). It is shown in Sec-
tion 4.5 that the modified algorithm results in a significant element reduction of the implicit fluxes.

3.3.2. Non-linear solver
Due to non-linearity in the flux vector ~Hi, a non-linear system of equations must be solved at each Runge–Kutta stage.

Here, we use an incomplete Newton method that does not update the Jacobian matrix during the Newton iterations. The
bi-conjugate gradient solver of [31] with a block-Jacobi preconditioner (e.g. see [32]) is used to solve the linear system. A
more sophisticated linear solver including proper preconditioners for different Mach numbers is a subject of future work
and has not been studied here.

3.3.3. Domain decomposition
For the proposed RS-IMEX algorithm with two different time-advancement schemes, the memory and work required for

every implicit grid point is more than that required for an explicit one. On parallel computers, the computational domain
must be decomposed such that both computational work and memory are balanced between the processors. However, it
is difficult to estimate the amount of work required for an implicit grid point because the convergence properties, and as
a result the required work depends on the flow, the grid, and even the time-step size.
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We therefore apply a dual-constraint partitioning algorithm. Here, we use ParMetis libraries [34], which are capable of
multi-constraint partitioning to decompose the domain among the processors. Through the constraints, the method tries
to balance both the number of grid points per processor and the number of implicit grid points per processor. At the same
time, it minimizes the edge-cuts at the boundaries between the processors. This approach does not require any information
about the work ratio between an explicit and implicit grid point and balances both work and memory simultaneously and
therefore, it is flow and time-step size independent. The main drawback of this approach is the fact that it might generate
disjointed partitions that will increase the edge-cuts at the boundaries between processors compared with those of a single-
constraint partitioning algorithm. This increase in the edge-cuts will result in a longer communication time. However, Kary-
pis and Kumar [33] showed that the increase is not more than 20–30% of the single-constraint partitioning edge-cut for a
wide range of number of partitions. Therefore, the communication overhead due to this increase in the edge-cut will not
dominate the speedup as long as the total communication time due to message passing at the interface between the proces-
sors is smaller than the computation time. Our numerical tests in Sections 4.5 and 4.6 confirm this fact and show that the
method reasonably scales up to large number of processors.
4. Verification and performance of the method

The 3D unstructured finite-volume scheme has been implemented in a Message Passing Interface (MPI) code capable of
running on an arbitrary number of processors with shared or distributed memory. Below we verify and show performance of
the method on a number of different test cases.

We begin by explaining some terminology for an unstructured grid (such as in Fig. 1).
CFL: is defined as
CFL ¼ Dt
2

max
Xk

1
VXk

X
f

ðj~uf :~̂nf j þ cf ÞAf

( )
;

where c is the local sound speed, ~u is the velocity vector, and Af is the area of the face @Xf
k.

Implicit node: A grid point for which some part of its flux is in the implicit portion.
Implicit fraction: The fraction of implicit nodes to the total number of grid points.
Nodal implicit fraction: For a point i, the fraction of neighboring grid points that have non-zero contribution to its implicit

flux.
4.1. Two-dimensional propagating vortex

To verify the accuracy of the RS-IMEX finite-volume scheme, we use an exact vortex solution to the Euler equations as
u ¼ M1 cos h� C
2p
ðy� y0 � ~vtÞe

f ðx;y;tÞ
2

� �
;

v ¼ M1 sin hþ C
2p
ðx� x0 � ~utÞe

f ðx;y;tÞ
2

� �
;

q ¼ 1� C2ðc� 1ÞM2
1

8p2 ef ðx;y;tÞ

 ! 1
c�1

;

p ¼ 1
c

1� C2ðc� 1ÞM2
1

8p2 ef ðx;y;tÞ

 ! c
c�1

;

where c is the gas specific heat ratio; c1 and q1 are the reference velocity and density, respectively; C is the non-dimen-
sional circulation; M1 is the free stream Mach number; ~u ¼ M1 cos h and ~v ¼ M1 sin h are the propagation velocities in x
and y directions, respectively; f ¼ 1� ðx� x0 � ~utÞ2 � ðy� y0 � ~vtÞ2; and (x0, y0) is the location of the vortex at t = 0.

A vortex with radius one, a freestream Mach number, M1 = 0.5 and non-dimensional circulation, C = 5.65 is placed at
(x0 = �1, y0 = �1) and is propagated diagonally to the point (x = 1, y = 1), a distance equal to 2.83 times the vortex core radius
(see Fig. 6). The initial and boundary data are provided by the exact solution. The time-step size is chosen such that CFL = 3,
which results in a non-zero implicit fraction. The grid is finer close to (x = 0, y = 0) (see Fig. 7), and thus the implicit nodes are
clustered close to the origin. As the vortex moves, the characteristic velocities u and c vary in time and as a result the stiffness
associated with each grid point changes. This change confirms the fact that not only the geometric stiffness is taken into ac-
count, the flow stiffness owing to change in the CFL number is also captured.

In order to perform a convergence study, the grid is refined homogeneously in all directions. The CFL number is kept con-
stant such that the implicit fraction is kept roughly constant among different grid levels (see Fig. 8). This ensures that both
the spatial and temporal convergence rates are measured. Indeed, we observe a second-order convergence rate in L2 and L1
(see Fig. 7).
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To investigate the stability of the RS-IMEX method when applied to the Euler equations in absence of grid-induced
numerical diffusion, we recompute the vortex on a uniform Cartesian grid with 100 � 100 elements. The vortex is initially
located at (x = �2, y = 0), propagates in x direction (h = 0) with velocity M1 = 0.5 and finally arrives at (x = 2, y = 0). Periodic
boundary conditions are imposed in all directions to eliminate the effect of dissipation from boundary conditions. In order to
have more distinct implicit–explicit regions, a strong vortex with C = 11.31 is used. The time step size chosen such that
CFL = 1.3. Since there is not a wide range of eigenvalues for this problem, larger time-step sizes will result in a fully implicit
domain. Fig. 9 shows both the density contours and implicit regions at both the beginning and the end of the simulation. The
results verify that the scheme can stably propagate the vortex and hence, does not rely on any grid-induced numerical dif-
fusion (note that numerical diffusion caused by skew-symmetric form and the time-advancement scheme are still present).

4.2. Boundary layer transition and growth of Tollmien–Schlichting waves

Sharp near-wall gradients due to the no-slip condition require small grid spacing in the wall-normal direction, necessi-
tating implicit treatment. At the same time, the wall-parallel grid resolution can be orders of magnitude larger and, hence,
the fluxes associated with those directions can be marched explicitly in time.

We simulate the growth of Tollmien–Schlichting (TS) waves in a flat-plate laminar boundary layer. The computational
domain is chosen such that Rex = U1x/m varies from 15,000 to 414,000. The initial mean field is calculated using the similarity
solution (see e.g. [36]) with freestream Mach number 0.2 and adiabatic wall boundary conditions. To damp the disturbances
at the inflow/outflow boundaries, a sponge layer is applied and the flow is penalized against the similarity solution. The TS
waves are generated using the Fasel and Konzelmann method [37] in which they introduced a permeable wall over the range
Rex = 0.9 � 105 (x = x1 = 0.9) to Rex = 1.1 � 105 (x = x2 = 1.1) with the prescribed velocity v=c1 ¼ Av̂ðxÞ sinð2pftÞ where
Fig. 9. Mixed implicit–explicit time-advancement on a uniform grid. Top: density contours; bottom: implicit regions; left: initial vortex; right: vortex after
propagating four length units in x direction.



Table 2
Implicit fraction as a function of CFL number for the boundary layer transition simulation.

CFL 1 2 5 10

Implicit fraction (%) 0.99 1.98 28.72 49.54

Fig. 10.
with CF
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v̂ðxÞ ¼ 20:25n3 � 35:4375n4 þ 15:1875n5;
with
n ¼
x�x1

xm�x1
for x1 < x < xm

x2�x
x2�xm

for xm < x < x2

(
; xm ¼

x1 þ x2

2
;

A = 2.0 � 10�4, and 2pf ¼ 1:4� 104U2
1=m1. In the streamwise direction, 400 grid points are uniformly distributed, whereas

101 grid points are used in wall-normal direction, y. At the inflow where Rex = 15,000, 16 grid points are inside the boundary
layer, and the first grid point in the y-direction is at Dy = 5%d99 where d99 is the boundary-layer thickness. The disturbances
are introduced at t = 0 and the simulation is carried out over 30 periods of the prescribed velocity at the permeable wall.
Throughout the final period, 100 samples equally spaced in time have been collected and the growth rate a of the distur-
bances is calculated, based on the inner peak of the streamwise velocity as defined in [37].

Table 2 shows the implicit fractions as a function of CFL number. As the CFL increases, the number of grid points for which
some part of their fluxes is advanced implicitly in time increases, resulting in higher implicit fractions. These grid points,
denoted as implicit nodes, are clustered near the wall. Note that at CFL = 1, only grid points on the boundary-layer wall
are implicit nodes. This implicit treatment is required due to the wall penalty terms used to impose no-slip boundary con-
ditions [17]. The added fluxes to impose no-slip conditions at walls introduce local stiffness in the system that requires those
fluxes to be advanced implicitly in time.

In addition, the growth rates are plotted in Fig. 10 and are compared with the incompressible analysis [38] and high-order
compressible calculations [39]. The current simulation results are in agreement with previous compressible results and are
slightly shifted relative to the incompressible analysis. Furthermore, the results with mixed implicit–explicit time-advance-
ment at CFL = 5.2 match those with explicit time-advancement at CFL = 1. For other values of CFL reported in Table 2, the
growth rates are almost identical (within 1% of the results at CFL = 1).

4.3. Low Reynolds number flow around a 2D circular cylinder

In this study, we consider the unsteady compressible laminar flow around a 2D circular cylinder with diameter D at
ReD = U1 D/v = 100. At this Reynolds number, the flow behind the cylinder separates and vortex shedding occurs. The free-
stream Mach number is sufficiently small (Ma = 0.1) to be able to compare the numerical results from the compressible flow
simulation with the available incompressible data. The computational domain is a circle of radius 30D. In [17], the far-field
boundary conditions were shown to have a small effect on the computational solution. Quadrilateral mesh cells are used
near the cylinder, whereas triangles are used to capture the wake. To resolve the thin laminar boundary layer in front of
the cylinder, the minimum radial grid spacing is set to 3 � 10�3D. 260 points are used in the circumferential direction. An
isothermal wall boundary condition is used on the cylinder wall. Fig. 11 shows the mesh used for the simulation. The sim-
ulation started with uniform flow plus random fluctuations to accelerate the onset of the vortex shedding. A snapshot of den-
sity contours in the wake of the cylinder is given in Fig. 11. Averages and other quantities are measured once the statistically
stationary solution is reached. Table 3 compares the simulation results with the existing experimental data as well as with
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Growth rates (a) of the TS waves as a function of Reynolds number (Red = U1d/m). Solid line: current simulation with CFL = 1;5: current simulation
L = 5.2; h: simulation of Nagarajan et al. [39] using a 6th-order compact Pade scheme; 	: incompressible analysis of Gaster [38].



Fig. 11. Top: grid used in the vicinity and in the wake of the cylinder; bottom: vortex shedding behind the cylinder.

Table 3
Simulation results for laminar flow around a 2D circular cylinder and comparison with experimental data as well as incompressible and compressible
simulations. Cd: drag coefficient; Pb: back pressure; St: Strouhal number; hsep: separation angle; Lb: recirculation bubble length.

Cd Pb St hsep Lb

Current simulation 1.347 0.74 0.168 118.6 1.41
Kwon and Choi [40] 1.340 0.166 1.40
Kravchenko and Moin [41] 0.71 0.162 117.3 1.45
Fey et al. [42] 0.165 ± 0.001
Svärd and Nordström [17] 1.341 0.165
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incompressible and compressible simulations. The results demonstrate that the numerical algorithm is capable of capturing
the unsteady flow on mixed grids.
4.4. Homogenous isotropic turbulence

Numerical simulation of homogenous isotropic turbulent flow has proved useful to study the properties of numerical
schemes for turbulent flows [3,22,43]. In this section, we validate the method by performing DNS of compressible decaying
homogenous isotropic turbulence on both a uniform Cartesian grid and a triply-periodic unstructured mesh with tetrahedral
elements.

The domain is taken to be a box of length 2p. The method of Blaisdell et al. [44] is used to generate the initial conditions.
At the start of the simulation, the pressure and density are set to be uniform, and incompressible turbulence is added only to
the velocity field. The magnitude of the fluctuations are such that they follow the prescribed energy spectrum:
EðkÞ ¼ 16

ffiffiffiffi
2
p

r
u2

0

k0

k4

k4
0

e
�2k2

k2
0 ; ð20Þ
where k is the wavenumber, and k0 is the most energetic mode in the initial condition. The initial turbulent Mach number is
given by Mt0 ¼

ffiffiffi
3
p

u0=c0 where c0 is the initial sound speed. The Reynolds number based on Taylor microscale (k) and eddy
turnover time (s) is Rek ¼ 2q0u0

l0k0
where l0 is the initial viscosity. Time is non-dimensionalized with s ¼ k=u0 ¼ 2

ffiffiffi
3
p

=ðk0Mt0 c0Þ.
First, we validate the method by comparing our results with the DNS results of [22]. For the structured mesh, 64 grid

points are used in each direction. The unstructured grid has the same number of points at each edge of the computational
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box and the total number of points is set to be almost equal to the structured case. The simulation is performed with Rek = 30,
Mt0 ¼ 0:3, and k0 = 4. The equations are non-dimensionalized with the initial density, temperature, and sound speed. The
evolution of the non-dimensional turbulent kinetic energy and the non-dimensional root mean square (rms) of the temper-
ature fluctuations are shown in Fig. 12. The results demonstrate that the present unstructured scheme captures the evolution
of the turbulent velocity and temperature fluctuations.

To investigate the effect of the grid on different turbulence eddy sizes, the 3D energy spectra of turbulent kinetic energy at
t/s = 5 are calculated and plotted in Fig. 13. To obtain the spectrum for the unstructured grid, the solution has been linearly
interpolated into a uniform Cartesian grid with 64 points in each direction. The energy pile-up at high wavenumbers is likely
due to interpolation errors that become more prominent at high wavenumbers.

So far the time-step size has been small enough not to have any implicit regions in the domain. An additional simulation
was carried out on the unstructured grid with a CFL number such that the implicit fraction is initially 10%. The time-implicit
mapping is updated every 500 time-steps. The 3D energy spectra and the time histories are shown in Fig. 14 and agree well
with the previous explicit results. As the turbulence decays, the CFL number decreases thus resulting in a reduction of the
implicit fraction.
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Fig. 13. 3D energy spectra at t/s = 5. —: structured grid; �: unstructured grid.
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4.5. Flow around a circular cylinder at ReD = 3900

The objective of this section is to validate our method and study its performance for LES. We perform LES of flow over a
circular cylinder at subcritical Reynolds number ReD ¼ U1D

m1
¼ 3900, which has been extensively studied for both incompress-

ible [45] and compressible [46] flows. The boundary layer around the cylinder requires a very fine grid, whereas the LES
away from the cylinder is less resolution demanding. As a result, implicit time-advancement is needed only near the cylinder
walls, and the rest of the computational domain can be advanced explicitly in time.

The simulation is performed with freestream Mach number, Ma1 = 0.4 on an O-type mesh with radius 24D and width pD
containing 3.2 million grid points. The time-step, Dt, is chosen to be constant such that the maximum CFL is approximately
16. This time-step results in an implicit fraction of 27%. The nodal implicit fraction is 7/27, meaning that only 7/27 � 25% of
the neighbors of an implicit node contribute to its implicit fluxes and the fluxes associated with the rest are advanced explic-
itly in time. The time-implicit mapping is updated 10 times during each shedding cycle. A snapshot of regions with implicit
nodes, which are clustered near the cylinder, is given in Fig. 15. The subgrid stress tensor is modeled using the dynamic Sma-
gorinsky [47] with Lilly’s modification [48]. Spanwise averaging is used to calculate the model coefficients and they are
clipped in case of negative total viscosity. In this simulation, less than 3% of the grid points were clipped, and the maximum
ratio of the total viscosity to the molecular viscosity is around 10. A snapshot of the vorticity magnitude and the contribution
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Fig. 15. Implicit/explicit mapping; Left: entire domain; right: near cylinder region. White regions are treated using implicit time-advancement.
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of the subgrid stress tensor is given in Fig. 16. The white regions in the viscosity ratio contours are generated when the vis-
cosity is clipped to zero.

In Fig. 17, the energy spectra at 2D and 5D downstream of the cylinder are compared with simulation results of Mani et al.
[46] in which they used a staggered sixth-order compact Pade scheme of [43]. Due to sufficient resolution near the cylinder,
the spectra are in good agreement even at high frequencies. However, as the grid becomes coarser downstream in the wake,
the high-order code is able to better resolve the high wavenumber fluctuations than the present second-order scheme. In any
case, the Strouhal number and the energy content up to at least five shedding frequencies are well-predicted.

In the rest of this section, we assess the performance of the RS-IMEX scheme. We begin by studying the performance of
the proposed scheme as the number of grid points per processor change. The computations have been carried out on the
Stanford WCR computer cluster [49], which has Intel Quad-Core Clovertown 2.33 GHz compute nodes with 1 GB RAM per
processor and uses Cisco DDR infiniband interconnect. The number of grid points per processor varies from 12,500 (256 pro-
cessors) to 133,000 (24 processors) for which the code reaches the limit of 1 GB memory per processor. The wall-clock time
Fig. 16. Top: vorticity magnitude contours; bottom: m
mm

, ratio of total viscosity to the molecular viscosity. For both figures contours are from 0 to 6.
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needed to advance the flow one vortex shedding period versus the number of grid points per processor is plotted in Fig. 18.
Three different cases are considered: (1) RS-IMEX method with CFL � 16; (2) fully implicit method with the same CFL; (3)
simulation at CFL � 1. Note that for Case 3 all the grid points except the ones on the cylinder wall have their fluxes advanced
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explicitly in time. Again, the implicit treatment on the cylinder wall is required due to the wall penalty terms added to im-
pose no-slip conditions (see Section 4.2).

As the number of grid points per processor decreases, the wall-clock time for the RS-IMEX scheme deviates more rapidly
from the ideal scaling than in the other two cases. This deviation is mainly due to two reasons: first, the implicit solver in the
RS-IMEX method requires extra communications between the processors than the explicit method; and second, the dual-
constraint partitioning in the RS-IMEX scheme yields disjointed partitions thus resulting in a larger edge-cut than explicit
and fully implicit methods and consequently an increase in the communication time. For example, on 64 processors, sin-
gle-constraint partitioning results in an edge-cuts of 290,705, whereas it increases by 20% to 350,689 when dual-constraint
partitioning is used. Nevertheless, even for a small number of grid points per processor, the RS-IMEX method results in over
five times increased efficiency. Moreover, the full implicit method was stopped at 66,000 grid points per processor because it
reached the limit of 1 GB memory per processor, whereas the RS-IMEX simulations can be performed with up to 140,000 grid
points per processor.

Strong and weak scalabilities of the RS-IMEX approach are plotted in Fig. 19. For the strong scalability the problem size is
fixed to 3.2 million grid points. The speedup is defined as
Fig. 19.
ideal sc
SðpÞ ¼
Tðpref Þ

TðpÞ
; ð21Þ
where T(p) is the wall-clock time for computing the flow for one vortex shedding using p processors and pref is the reference
case. Here, the case with 24 processors is taken as the reference, i.e., pref = 24. From a practical point of view, most of the
simulations are performed with 50,000 to 100,000 grid points per processor, for which the speedup is more than 90% of
the ideal case.

The weak scaling is more difficult to study for the RS-IMEX method. By increasing the number of processors, we try to
keep the number of grid points per processor constant. This implies having the same implicit mapping for problems with
different sizes, which is the main reason why only two data points have been collected for this study. To have the same map-
ping, we take the simulation grid with 3.2 million grid points and measure the time required to advance 100 time steps on 32
processors [denoted eT ð32Þ]. Then the grid is refined homogeneously in all directions, which results in a grid that has eight
times more grid points. The time-step size is split in half and the simulation is performed on 256 processors. Again, the time,eT ð256Þ, required to march 100 time steps is measured. With a half-time-step size, the implicit mapping remains almost con-
stant. On 32 processors, on average, the implicit fraction is 27.25% and on 256 processors it is 27.15%. For this study, the
efficiency
EðpÞ ¼
eT ðpref ÞeT ðpÞ ; ð22Þ
where pref = 32, decreased to 0.86 on 256 processors.
One should note that the performance of the RS-IMEX method is a strong function of the CFL number. At CFL numbers

close to unity, the algorithm will advance all the terms explicitly in time and no gain is obtained, whereas for large time-step
sizes, the method would behave as a fully implicit algorithm. We define the performance of the RS-IMEX method as
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Table 4
Performance (�) of the RS-IMEX method and implicit fractions as a function of the CFL number. The simulation is performed on 64 processors.

CFL 1 2 4 8 16 32

�(CFL) 1.00 1.82 2.44 4.00 6.67 5.26

Implicit fraction (%) 0.31 1.69 7.38 16.8 27.5 38.9
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�ðCFLÞ ¼
TðCFL¼1Þ

TðCFLÞ
; ð23Þ
where T ðCFLÞ is the wall-clock time for computing the flow for one vortex shedding at a given CFL number. For flow around the
cylinder, this parameter is calculated at six different CFL numbers and the results are given in Table 4. The performance ini-
tially increases with the CFL number and then decreases. This drop in efficiency beyond a certain CFL number is due to the
increase in the cost of the linear and non-linear solvers. We note that for non-stationary solutions, the CFL will also be lim-
ited by the required temporal accuracy.

4.6. LES of a transonic turbulent jet

To assess the proposed RS-IMEX approach and its capability of performing high-fidelity large-scale numerical simulations
on massively parallel computers, LES of a turbulent jet with acoustic Mach number, Ma = Uj/c1 = 0.89 and Reynolds number,
ReD = UjD/mj = 1.2 � 105 is performed. Here, Uj is the jet exit velocity, c1 is the ambient speed of sound, D is the nozzle diam-
eter, and mj is the jet’s kinematic viscosity. A cold jet with static temperature ratio Tj/T1 = 0.84 is considered. The prescribed
geometry of the nozzle is the Acoustic Reference Nozzle (ARN) [50]. The computational domain is a cylinder with radius
R = 22.5D and height H = 56.5D (�10D 6 z 6 46.5D) with the nozzle exit located at z = 3.5D. The domain is decomposed with
35.2 million grid points. The mesh uses hexahedral elements and is effectively axisymmetric with 128 elements in the azi-
muthal direction near the nozzle geometry and unstructured in the core to avoid the centerline coordinate singularity. The
mesh is designed with highly anisotropic elements near the nozzle lip boundary layer (see Fig. 20).

To perform scalability study, the time-step is chosen such that CFL � 20. The wall-normal spacing of the first element near
the exit of the nozzle is 0.0001D. Hence, the region near the nozzle restricts the time-step size thus requiring implicit time-
advancement. Regions with implicit nodes are shown in Fig. 20. The present algorithm clusters the implicit grid points near
the nozzle with implicit fraction and nodal implicit fractions 14% and 7/27, respectively. The strong scaling study for this case
Fig. 20. Near nozzle region. Top: time-implicit mapping; bottom: grid.
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is performed on Argonne Blue Gene/P IBM cluster [51] using up to 8192 core. Each core has a 850 MHz PowerPC 450 pro-
cessor. The speedup is defined in the same way as in (21) with pref = 256 and T(p) being the averaged wall-clock time required
to advance the equations one time-step. Fig. 21 shows the speedup as a function of the number of processors. On 256 cores,
there are 137,500 grid points per processor, whereas there is only 4300 grid points per processor using 8192 cores. The effi-
ciency is more than 75% up to 4096 cores (corresponding to 8600 grid points per processor) and it drops to 65% using 8192
cores.

5. Conclusions

We have designed an efficient numerical scheme for DNS and LES of compressible flows on unstructured grids suitable for
realistic applications. For the spatial discretization, we have used a node-based SBP–SAT finite-volume method with prov-
able stability properties on general unstructured meshes. The main contribution of this paper is the Row-Splitting algorithm
that decomposes the computational problem into stiff and non-stiff parts and enables the use of an implicit–explicit Runge–
Kutta temporal scheme. It was shown that the splitting did not introduce any eigenvalues with positive real parts, which
would have introduced instability in the split system. For multi-dimensional problems, we also proposed a simple change
of the algorithm to further reduce the size of the implicit set.

Second-order convergence of the scheme was verified for a 2D propagating vortex on prisms. Further tests for which we
have validated the method were: a boundary-layer transition with TS waves; a 2D laminar flow over a cylinder on a mixed
grid; DNS of homogeneous isotropic turbulence on both hexahedral and tetrahedral elements; LES of the flow over a cylinder
with a turbulent wake; and LES of a transonic turbulent jet.

To balance both the computational work and the required memory on multiple processors, a dual-constraint partitioning
method was employed. Scalability and efficiency studies have been performed, and it was shown that in addition to a sig-
nificant memory-saving compared with a fully implicit method, a notable reduction in computer cost is achieved.
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